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The purpose of this paper is to undertake a graph theoretic analysis of those
empirical structures for which it is meaningful to consider a part of the struc-
ture as a system and the remainder as its environment. We shall be primarily
concerned with social systems such as groups, social networks or organiza-
tions, but the results are applicable to any structure that can be appropriately
represented by means of graph theory.

The term empirical structure is here used to refer to a set of empirical ele-
ments (such as people, roles or positions) together with a set of empirical re-
lationships (such as liking, communication or influence) between pairs of
elements. Given such a structure, its digraph D is obtained as follows. The set
of points of D, denoted V = {v,, v, . . ., v,}, corresponds to the set of empiri-
cal elements, and there is an arc (directed line) from v, to v, if and only if the
corresponding ordered pair of elements is in the specified empirical relation.
Throughout the following discussion we shall be concerned with relationships
that can be viewed as “links” of communication by which “messages” are
transmitted from one element to another. In graph theory, a walk W of D is
defined as an alternating sequence of points and arcs which begins and ends
with a point and has the property that each arc is preceded by its first point and
followed by its second one. Thus each walk of D represents a “chain of com-
munication” within the structure, and it is possible for a message to reach ele-
ment v; from v; if and only if D contains a walk from v; to v;.

It should be noted that the term message is used here to refer to anything
that can be transmitted from one element to another. Thus, for example, if the
elements of a structure are thought of as roles, subgroups or positions of an
organization, then a message might be a person, memorandum, unit of work or
some other “object” that can change its location in the organization. If, on the
other hand, elements are taken to be individual people, then a message might
be any of the following: (a) an item of information, an opinion or a rumor;
(b) an influence attempt, such as an order, request or suggestion; (c) some ma-

'Reprinted from Journal of Mathematical Sociology, 5:87—-111, 1977
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terial object that may be given, lent or sold; or (d) some symbolic object such
as a favor, approval, help or support. This latter type of interpretation has been
employed in research on social networks, as reported by Mitchell (1969) and
Barnes (1972), where it is assumed that a variety of such messages can be
transmitted through a given network. A link that carries more than one kind of
message is said by these authors to be “multistranded.”

Let us assume that we have some empirical basis for identifying a particular
system within a given structure so that the set V of points of its associated
digraph can be partitioned into two subsets, S = {s, 55, ..., s,,}, corresponding
to the elements of the system, and E = {e,, e,,...,¢,_,} =V — §, correspond-
ing to the elements of its environment. Strictly speaking, a system and its en-
vironment correspond to the subgraphs (S) and (E) that are induced by their
sets of points, but it will be convenient to denote them more simply by S and E.

For illustrative purposes, two rather different sorts of interpretation will be
employed throughout this paper. In the first, we assume that a digraph D rep-
resents the interpersonal communication structure of a group of people and
that system S is a specific subgroup within the group. Messages are taken to be
items of information which can be transmitted only via links of the structure.
Thus, points correspond to individual people, arcs correspond to links of inter-
personal communication and walks indicate permissible chains of communi-
cation. In the second interpretation, we assume that D represents the career
structure of an organization and that S represents a specified department within
the organization. Here, points correspond to positions (or jobs), messages are
thought of as individual people, arcs indicate permissible changes of position
and walks designate permissible career lines of individuals.

Figure 1 shows the digraph of a small structure containing a system, § =
{s\, 5», 53}, and its environment, E = {e|, e, €3, €4, €5, €¢}. It can readily be seen
that in this digraph every walk W between a point of S and a point of E must
contain arcs s;e, or e;s, and hence points s; and e,. The corresponding com-
munication links and elements of the structure are thus uniquely involved in all
transactions between the system and its environment and would seem intui-
tively to be located in the “boundary” between S and E.

If this digraph is interpreted as an interpersonal communication structure,
then all chains of communication between a member of subgroup S and a non-
member must contain “boundary” persons s, and e, who are uniquely able to
monitor, modify or intercept any item of information going between the sub-
group and its environment. It is also reasonable to assume, in keeping with the
analysis of the functions of gossip in social networks presented by Epstein
(1969), that when an item of information traverses a “boundary link” of such

2The definitions of concepts of graph theory that are not given in this paper may be found in
Harary, Norman and Cartwright (1965).
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Figure 1. The digraph of a system S = {s,, 5,, 55} and its environment £ = {e,, e, €3,
ey, €5, €6).

a system, its content or meaning may be significantly altered. In a similar way,
if D is interpreted as the career structure of an organization, then all career lines
that include positions in both department § and its environment must contain
“boundary positions” s, and e,. Anyone entering or leaving the department
can do so only by going directly from one of these positions to the other, and
when a person traverses a “boundary link”™ in the career structure, he changes
departmental membership and consequently becomes subjected to a different
set of influences and expectations.

The concept of boundary has been employed extensively by theorists
(Emery, 1969; Katz and Kahn, 1966; Miller and Rice, 1967; Rice, 1963) who
adopt a “systems approach” to social organizations. According to this view,
those members of an organization who are directly involved in transactions
between the organization and its environment are said to occupy “boundary
roles” and various consequences have been identified for such individuals.
Thus, for example, Kahn et al. (1964) have reported that occupants of boundary
roles are more likely to experience role conflict than are members located
“deep within the organization.” The explanation proposed by Kahn et al. to
account for this difference can be elucidated by means of the digraph shown in
Figure 1. Let us assume that S and E represent a (miniature) organization and
its environment, that the points of D correspond to individuals, that role expec-
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tations are communicated via the arcs of D and that these expectations differ
when they come from inside as opposed to outside the organization. It then
follows immediately that person s, should experience more role conflict than
8§, OT §3. :

The concept of boundary has also been used implicitly by Korte and Mil-
gram (1970) in a study of acquaintance networks connecting racial groups in
the United States. The procedure involved asking a number of “source” indi-
viduals, who were white, to try to send a booklet via a sequence of acquain-
tances to a black “target” person in a different community. The investigators
were able to record the progress of each booklet as it proceeded through the
network and thus to identify a chain of communication from each source to the
target. If we conceive of the white segment of an acquaintance network as sys-
tem § and the black segment as environment E, then every successful chain
must contain a “boundary link” of S. One striking feature of this study is that
such links tended to appear only late in each chain of communication; in 23 of
the 35 completed chains, the only boundary link was the last one of the chain,
and in seven it was next to the last. Korte and Milgram call the white member
of such a link a “gatekeeper,” a term introduced by Lewin (1943 :186) to re-
fer more generally to anyone who can control the flow of objects across the
boundary of a system.

In the following pages, we first develop a number of concepts which give
precise meaning to the intuitive notions of the “boundary” of a system and the
“degree of stratification” of a system and its environment. We then consider
the properties of boundaries of systems contained in three common types of
digraphs and conclude by showing how the concept of convexity can be used
in the analysis of system-environment relationships.

Properties of Boundaries

From the foregoing discussion it is evident that the processes at the boundary
between a system S and its environment E involve (a) links between the ele-
ments of S and E, (b) elements of S that are in direct contact with E and
(c) elements of E that are in direct contact with §. The formal definition of
boundary to be presented below makes use of the corresponding graph theo-
retical terms (arcs of D, points of S and points of E), but its statement requires
some preliminary definitions which permit a distinction between links from S
to £ and those from E to S.

For any system S within a digraph D, its set of out-liaisons, denoted L,,
consists of those arcs viv; of D from a point v; of § to a point v; of E, and its set
L; of in-liaisons consists of the arcs to a point of § from a point of E. Thus,
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every out-liaison is of the form s, e; and every in-liaison is of the form e;s;. The
out-liaisons and in-liaisons, taken together, constitute the set L of liaisons of S.
The out-frontier F, of S is the set of first points of all out-liaisons of S, the in-
frontier F, is the set of second points of all in-liaisons, and the frontier F is the
union of F, and F. The out-neighborhood N, of § is the set of second points of
all out-liaisons of S, the in-neighborhood N, is the set of first points of all in-
liaisons and the neighborhood N is the union of N, and N,.

With this background, we may now state a formal definition of the boundary
of a system. The boundary B(S, D) of a system S within a digraph D is the
subgraph of D induced by the liaisons of S. In digraph theory, a bipartite di-
graph has its points partitioned into two subsets, V; and V,, such that every arc
joins a point of V| with a point of ;. Thus, the boundary B(S, D) is that bipartite
subgraph of D in which the points of one set are all the points in the frontier of
S, the points of the second set are all those in the neighborhood of S and the
arcs are the liaisons of S.

In Figure 2, the boundary B(S, D), for system S = {s,, 5,, 53, 5.}, is displayed
below the digraph D. It can readily be seen that its two sets of liaisons L, and
L, its out-frontier F, and its in-frontier F, and its out-neighborhood ¥, and
in-neighborhood N; are L, = {s:e,, s4e,}, L; = {€15;, €381}, F, = {53, 8,}, FE =
{51, 53}, N,= {e,, &2}, N; = {e,, e;}. It will be noted that in this particular case
the point s; lies in both the out-frontier and in-frontier of S and that e, lies in
both the out-neighborhood and in-neighborhood of S.

B(S, D): 5,

[ BN ]
AY

Figure 2. A system S and its boundary B(S, D).
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If the digraph of Figure 2 is interpreted as an interpersonal communication
structure, then we see that the boundary of subgroup S is made up of (a) its
members s,, 5; and s, who are located in the frontier of §, (b) nonmembers e,,
e, and e; who are in its neighborhood and (¢) communication links sse;, s4e,
e,5; and e;s; which join members and nonmembers. The out-frontier of the
subgroup consists of all members who can communicate directly to at least one
nonmember, and the in-frontier consists of those members who can receive a
message directly from the outside. The out-neighborhood is composed of those
people in the environment of the subgroup who can receive a message directly
from a member, and its in-neighborhood is composed of those in the environ-
ment who can transmit one directly to a member. The out-liaisons consist of
those communication links by which a message can leave S, whereas its in-
liaisons are those by which a message can enter S.

If, on the other hand, the digraph is interpreted as the career structure of an
organization, then B(S, D) represents the boundary of department S. Its out-
frontier consists of those positions from which a person may leave the depart-
ment, and its in-frontier consists of those positions at which a person may enter.
Its out-neighborhood consists of the positions outside the department to which
a member may move, and its in-neighborhood consists of those from which a
person may enter the department. Finally, the out-liaisons indicate permissible
changes of position that take a person out of the department, and the in-liaisons
indicate those by which a person may enter.

We shall refer to the sets F,, F,, F, N,, N, N, L,, L, and L as the boundary sets
of B(S, D) and denote their cardinalities by f,, f., f, n,, 1, 1, I,, I; and [, respec-
tively. The minimum cardinality of each of these sets is clearly zero, in which
case the set is empty. If we denote the number of points in S and D by m and p,
then for the frontier sets F,, F; and F their maximum cardinality is m, for the
neighborhood sets N, N; and N it is p — m, for the liaison sets L, and L; it is
m(p — m) and for L it is 2m(p — m).

The absolute size of a boundary set is defined as its cardinality. Loosely
speaking, a system may be said to be in closer contact with its environment the
larger the size of its frontier, neighborhood, or liaison set. The relative size of
F,, F and F is defined as f,/m, f,/m and f/m. These ratios vary between 0 and 1
and indicate the proportion of elements of S that are in its out-frontier, in-
frontier and frontier, respectively. The corresponding indices of the relative
size of N,, N; and N are n,/(p — m), n;,/(p — m) and n/(p — m) and have
analogous meanings. The relative size of L,, L; and L is given by [,/m(p — m),
I/m(p — m) and I/2m(p — m). All of these ratios equal zero when all of the
boundary sets are empty and all equal one when S is in maximal contact with
its environment. For the structure shown in Figure 2, we see that the relative
sizes of F,, F, and F are %, % and %, the relative sizes of N,, N; and N are %5, %5
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and 34, the relative sizes of L, and L, are each %2 and the relative size of L
is %54,

If the cardinality of each boundary set of a system is maximum, then every
point of S is in both its out-frontier and in-frontier, every point of E is in both
the out-neighborhood and in-neighborhood of S and there is an out-liaison from
every point of S to every point of E and an in-liaison to every point of S
from every point of E. In other words, every element of S can engage in direct
two-way communication with every element of E.

When all of the boundary sets of S are empty, we say that S has no boundary.
Such a situation obviously arises when § = V, since S then has no environment
within D. And it can be easily shown that S has no boundary if and only if S is
a union of weak components of D. A system with no boundary is completely
self-contained with respect to a given structure either because it has no envi-
ronment within the structure or because it has no contact with its environment.

If none of the boundary sets of S is empty, then the frontier F of S is as small
as possible when it contains just one point s. It follows at once that both F, and
F, must consist of the single point s. Similarly, its neighborhood N is of mini-
mum size when it contains just one point e, which is then also the only point in
N, and N,. When both of these conditions are met, the boundary consists of one
point s in S, the point ¢ in E, and the symmetric pair of liaisons joining them.
Such a structure is shown in Figure 1.

It can be readily seen that if L, is empty, then so are F, and N,. In this case,
no message originating in the system can reach the environment. An example
of this sort is provided in the theory of Markov chains, where points correspond
to “states” and there is an arc v,v; in D if and only if the probability that there
will be a direct transition from state v, to v; is greater than zero. A subset S of
the points of a Markov chain is said to be “closed” if S has no out-liaisons (see
Feller, 1957:349). Thus, when a Markov chain is closed, there can be no tran-
sition from a state in S to one not in S. If such a system has any liaisons, its
boundary consists of the nonempty sets L;, F; and N,. All of its liaisons thus go
from E to S and we say that the boundary of S has an inward orientation.
Figure 3 shows a system whose boundary has such an orientation.

If the boundary of a system contains out-liaisons but no in-liaisons, we say
that it has an outward orientation. Since, in this case, all liaisons go from S to
E, it follows that S can influence its environment but not be influenced by it.

We conclude this section by considering two indices for characterizing each
element s of a system S. The out-degree odp(v) of a point v in a digraph D is
the number of arcs from v, and the in-degree idy(v) is the number of arcs to v.
We employ the notation od,(s) and id,(s) to denote the out-degree and in-degree
of a point s within the subgraph S. These terms give the number of internal
arcs that terminate at s. Similarly, the notation od(s) and idg(s) refers to the
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B(S, D):

Figure 3. A boundary with an inward orientation.

boundary subgraph B(S, D) and refers to the liaisons incident with s. Since
every arc of D that is incident with s is either an internal arc or a liaison, it
follows that: '

od{s) + ody(s) = odp(s) and
id(s) + idg(s) = idp(s)

The index of out-liaison concentration of a point s is the ratio ody(s)/odp(s).
This index gives the proportion of arcs originating at s that are out-liaisons and
thus the proportion of points adjacent to s that lie in the environment of S.
Clearly, it is greater than zero if and only if s is in the out-frontier of §. The
index of in-liaison concentration of s is the ratio idy(s)/id,(s) and has an analo-
gous meaning. Referring back to the system shown in Figure 1, we see that the
indices of out-liaison and in-liaison concentration for s, are both 4. Thus, this
element lies in both the in-frontier and out-frontier of S, and ¥4 of its contacts
are outside of S. On the other hand, these indices are both % for s, and s, whose
contacts lie entirely within S.

Stratification of a System and Its Environment

In the discussion thus far, a distinction has been made between two types of
points within a system S: frontier points (those adjacent with a point of E) and
inner points (all other points of §). We now develop a more general method by
which the points of § can be assigned to strata according to their proximity to



A Graph-Theoretic Approach to System-Environment Relationships 311

E. To do so, we need two directionally dual definitions of point-set distance.
Let U be a subset of the set of points of D. Then the distance d(v, U) from a
point v to a set U is the minimum distance from v to a point in U, and the
distance d(U, v) from U to v is the minimum distance from a point # in U to v.2
From a point s of S, the distance d(s, N,) is thus the minimum distance from s
to any point in the out-neighborhood of S, and the distance d(¥,, s) is the mini-
mum distance to s from any point in the in-neighborhood of S. And since these
distances are clearly the shortest distances between s and any point of E, they
may be thought of as the distances between s and the environment of S, explic-
itly, d(s, N,) = d(s, E) and d(N,, 5) = d(E, s) for all points s of S.

A geodesic from a point v to a set U is a path of minimum length from v to
any point # in U. Thus, if s is a point in S, then each geodesic from sto N, is a
shortest path from s to any point in its out-neighborhood. A geodesic from a
set of points to a single point is defined similarly. Thus each geodesic from N,
to s is a shortest path from any point in N, to s. Clearly, d(s, N,) = k if and only
if D contains a geodesic from s to N, of length &, and d(¥V,, s) = k if and only if
D contains a geodesic from N, to s of length .

It will be recalled that the boundary B(S, D) is the subgraph of D that is
induced by the liaisons of S. Let us now consider two analogous subgraphs of
D that are induced by the geodesics from s to N, and from N, to s, respectively.
The out-stratification subgraph Z,(S, D) is the subgraph of D induced by the
geodesics from s to N,, for all points s in S, and the in-stratification subgraph
Z{S, D) is the subgraph of D induced by the geodesics from N, to the points s
in S. Thus the point set of Z,(S, D) consists of N, and the set S, of all points of
S that can reach N,, and its arc set consists of just those contained in a geodesic
from a point of S, to the out-neighborhood »,. Similarly, the point set of
Z{(S, D) consists of N, and the set S, of all points of S that are reachable from
N,, and its arc set consists of just those contained in a geodesic from N, to a
point s of S,. It should be noted that the boundary B(S, D) is a subgraph of the
union of Z,(§, D) and Z(S, D). Figure 4 shows the stratification subgraphs for
the system S = {s,, 55, 83, 84, Ss5}. .

We now define the k’th out-stratum of S, denoted ,S,, as the subset of the
points of § that can reach a point of N, for which d(s, N,) = k, and the k’th in-
stratum of S, S,, as the subset of the points s of § that are reachable from a
point of N, for which d(¥, s) = k. Thus, the k’th out-stratum consists of those
points of S that can reach a point of N, by a geodesic of length & but not by any
shorter path. And the k’th in-stratum consists of those points of S that can be
reached from a point of N, by a geodesic of length k but not by any shorter

3The definition of point-set distance gives precise meaning to the concept of distance from a
point to the outside, which Lewin (1941) employed to characterize the stratification of “natural
wholes.”
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Figure 4. The stratification subgraphs Z,(S, D) and Z,(S, D) of a system S.

path. Clearly, the first out-stratum S, is the out-frontier of S, and ,S; is the in-
frontier of S. It should be noted that no point of S lies in more than one out-
stratum (or in-stratum), but there may be points that are not in any out-stratum
because they cannot reach a point of N, (or not in any in-stratum because they
cannot be reached from a point of N,). If, however, S is strong, then both the
out-strata and the in-strata do partition the points of S.

The degree of out-stratification of S is the number of its out-strata, and the
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degree of in-stratification of S is the number of its in-strata. Clearly, the degree
of out-stratification and the degree of in-stratification for a given system S need
not be the same. If S contains m points, both of these indices may vary between
o and m. The degree of out-stratification of S is 0 if and only if the out-frontier
F, is empty. It is 1 if and only if every point of S is in F,. And it is m if and only
if the following conditions are satisfied: (1) F, consists of a single point s;
(2) there exists a path W to s containing all points of S and no other ones and
(3) every path from a point of S to s is a subpath of W. These three conditions
together ensure that each point of S constitutes an out-stratum, and conversely.
Corresponding statements about the degree of in-stratification can readily be
formulated.

Referring again to Figure 4, we see that S has two out-strata, |, = F, = {s,,
s3, 84} and ,S, = {s,, s5}. Thus, its degree of out-stratification is 2. And since
every point of S is contained in Z,(S, D), they can all reach a point of E in two
steps or less along the geodesics contained in Z,(S, D). On the other hand, the
degree of in-stratification of § is 4, and its in-strata are ,S;, = F, = {s3, 54},
25 = {85}, 55, = {s,} and ,S; = {s,}. And since every point of S is contained
in Z(S, D), they can all be reached by a point of E, but here 4 steps are required.

Let us assume that this digraph represents an interpersonal communication
structure in which one unit of time is required for a message to traverse each
communication link. Then each member in the k’th out-stratum of subgroup §
can send a message to some nonmember in no more than k units of time, and
everyone can do so in at most 2 units. By similar reasoning, it requires at least
4 units of time for a message to reach every member of the subgroup from the
outside. If we make the further assumption that a message undergoes a unit of
distortion each time it traverses a communication link, then any message origi-
nating with a member in the £’th out-stratum will have undergone at least k
units of distortion when it first reaches a nonmember. And any message origi-
nating with a nonmember will have undergone at least k units of distortion
when it reaches a member in the &’th in-stratum. Other implications of the
stratification of a system can be readily derived by assigning other meanings to
the terms point, arc and message, or by postulating other consequences of the
transmission of messages.

It is evident that the points in the environment of a system can be stratified
in a similar fashion. The k’th out-stratum of E (relative to S), denoted (E,, is
the subset of the set of points of E that are reachable from a point of F, for
which d(F,, ) = k, and the k’th in-stratum of E, ,E,, is the subset of the points
of E that can reach a point of F, for which d(e, F) = k. The degree of out-
stratification and the degree of in-stratification of E are the number of its out-
strata and in-strata, respectively. For the digraph shown in Figure 4, the degree
of out-stratification of E is 4 and its degree of in-stratification is 6.
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Boundaries in Different Kinds of Digraphs

The concepts discussed thus far are applicable to digraphs in general. If, how-
ever, it is known that D is a digraph of some particular type, certain implica-
tions may be drawn concerning the boundary properties of systems contained
within D. We now consider some of these implications for three common types
of structures: symmetric digraphs, transitive digraphs and signed graphs.

For this purpose, we need to introduce some additional basic concepts of
graph theory. A semipath joining v, with v, is a collection of distinct points, v,,
Vi, . .., V, together with n — 1 arcs, one from each pair v,v, or v,v,, v,v; Or
VaVa, . . ., Vv, Of v, . A digraph D is weak if every two points of D are
joined by a semipath, and it is strong if every two points are mutually reach-
able. For any digraph D, a subgraph of D is maximal with respect to some
property if D has no larger subgraph containing it which has this property. A
weak component of D is a maximal weak subgraph. A strong component is a
maximal strong subgraph. And a cligue is a maximal complete symmetric
subgraph.

SYMMETRIC DIGRAPHS

An arc uv of a digraph D is said to be symmetric if the arc vu is also in D;
otherwise, it is said to be asymmetric. A symmetric digraph is one containing
only symmetric arcs. Thus, for example, a communication structure is sym-
metric if all of its links are two-way, and a sociometric structure is symmetric
if all choices are mutual. It is evident that if two points, u and v, are joined by
a semipath in a symmetric digraph, they are also joined by two paths of the
same length, one from u to v and one from v to u. Thus, every weak component
of a symmetric digraph is strong, and the distance d(u, v) equals d(v, u) for any
two points of D.

Let us now consider a system S within a symmetric digraph D. Clearly,
every out-liaison s;¢; of S has a corresponding in-liaison ¢;s,, and conversely.
Thus every liaison of § is a symmetric arc. It follows immediately that every
point in the frontier F of § is in both its out-frontier F, and in-frontier F;, and
every point in N is in both N, and N,. And since the distance between every pair
of points is symmetric, the k’th out-stratum S, and the k’th in-stratum ,S; con-
tain exactly the same set of points, so that the degrees of out-stratification
and in-stratification are the same. Similar observations obviously hold for the
stratification of the environment of S.

If D is a symmetric digraph and § is a strong component of D, then it can
easily be shown that the boundary B(S, D) must be empty. Thus, if a system S
is a strong component of a symmetric structure, then messages can go, directly
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or indirectly, from each element to every other element of S but no messages
can go in either direction between an element of § and an element of E.

TRANSITIVE DIGRAPHS

A digraph D is transitive if it contains an arc uw whenever arcs uv and vw are
in D, for any distinct points u, v and w. Thus, for example, an interpersonal
power structure is transitive if, for any three people, person u has power over
w whenever u has power over v and v has power over w. And a sociometric
structure is transitive if all members follow the principle: “A friend of my
friend is my friend.” A useful characterization of transitive digraphs is given
in the following theorem (Harary, Norman and Cartwright, 1965: 120):

Theorem 1. A digraph is transitive if and only if it has the following properties:
(1) Every strong component S is maximal complete symmetric (that is, a
clique).

(2) There is an arc from every point in clique S, to every point is S; whenever
there is a path from any point in S, to any point in S;.

Some of the boundary properties of cliques in transitive digraphs may now be
specified:

Corollary 1a. Let D be a transitive digraph. Then

(1) Every symmetric arc of D is an internal arc of some clique S, and every
asymmetric arc is a liaison of some clique.

(2) The out-frontier of any clique S is either empty or contains every point of
S, and the same holds for its in-frontier.

(3) The out-neighborhood of any clique S consists of all points in its environ-
ment that are reachable from any point of S, and the in-neighborhood consists
of all points in E that can reach any point of S.

Corollary 1b. Let S, and S; be any two cliques of a transitive digraph. Then, in
the subgraph induced by these two cliques the boundary of S, satisfies exactly
one of the following conditions: (1) it is empty; (2) it has an outward orienta-
tion and contains an out-liaison from every point of S, to every point of S;; (3) it
has an inward orientation and contains an in-liaison from every point of §; to
every point of S.

The condensation D* of a digraph D is the digraph whose points correspond
to the strong components Sy, S, . . ., S, of D and whose arcs are determined as
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follows: there is an arc from point S, to S; in D* if and only if there is at least
one arc from a point of §; to one of S, in D. Clearly, every condensed digraph
D* is acyclic (and hence asymmetric), and each point S, of D* can therefore be
assigned a level b; such that b, < b, for each arc §,S, in D* (Harary, Norman
and Cartwright, 1965:268). Now, if D is transitive, then each point §; of D*
corresponds to a clique S; of D, and the level b, of S, in D* gives the level of its
associated clique in D. Thus, for any clique S; of a transitive digraph, each of
its internal arcs joins two points at the same level, each of its out-liaisons goes
to a point at a higher level and each of its in-liaisons comes from a point at a
lower level. And since the condensation of a transitive digraph is transitive and
asymmetric, we see that a transitive structure may be characterized as a partial
order (or “hierarchy”) of cliques.

It has been proposed by Davis (1967), Davis and Leinhardt (1970) and Hol-
land and Leinhardt (1970; 1971) that sociometric choices display a tendency
toward transitivity. If this tendency is fully realized by a given group of people,
the resulting sociometric structure has the properties discussed above. The
group thus consists of subgroups in which all members mutually choose each
other. These subgroups can be assigned levels (perhaps indicative of their
sociometric “status’) such that all choices between members of different sub-
groups are unreciprocated and go from a lower to a higher level. And for every
pair of subgroups S; and S, either every member of S; chooses every member
of §; and no member of S, chooses any member of S, or there are no choices
whatsoever between members of S; and S,.

The properties of transitive digraphs make it clear that as the number of
people in a sociometric structure increases, the attainment of transitivity may
require an increasingly large number of choices on the part of some people. If
there are m members of a clique S, then each member of § must choose the
m — 1 other members of S. And if there are r people in the environment of §
who can be reached from any member of S, then every member of § must also
choose r members of E. Thus the quantity »r + m — 1 gives the number of
choices required of each member of a clique S in a transitive structure. And it
is clear that this number may be quite large if S is large or is located at a lower
level of the structure. We might expect, therefore, that even if there is a ten-
dency toward transitivity in such structures, they may not always contain all of
the arcs required by transitivity due to some empirical constraint on the number
of choices made by a given person.

This observation suggests that it would be useful to have a characterization
of digraphs that approximate, but do not necessarily fully satisfy, the property
of transitivity. We shall say that digraph is quasi-transitive if it has at least one
arc from a point of a strong component S, to one of S; whenever there is a path
from a point of S, to one of S;. Clearly, every transitive digraph is quasi-transi-
tive, but not conversely. It can be easily shown that the condensation D* of
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Figure 5. A quasi-transitive digraph D and its transitive condensation D*.

a quasi-transitive digraph D is transitive and, of course, asymmetric. Thus,
quasi-transitive and transitive digraphs are alike in that both may be character-
ized as a partial order of strong components and, in both, each strong
component S; can be assigned to a level b, such that no arc goes from a higher
level to a lower one. Figure 5 shows a quasi-transitive digraph D and its tran-
sitive condensation D*.

Transitive and quasi-transitive digraphs differ essentially in their require-
ments for the number of internal arcs within each strong component and the
number of liaisons between strong components. In a transitive digraph, the
strong components are complete symmetric, but in a quasi-transitive digraph
they may be neither complete nor symmetric. Thus if a strong component S; of
D contains m; points, the number of internal arcs of S, is m; (m; — 1) when D is
transitive, but this number may be as small as m; when D is quasi-transitive.
And if §; and S, are (nontrivial) strong components of D, the number of liaisons
in a nonempty boundary between them is msm; when D is transitive, but this
number may be as small as 1 when D is quasi-transitive.
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SIGNED DIGRAPHS

A signed digraph is one in which every arc has either a positive or a negative
sign. Such digraphs may be used to represent any structure containing rela-
tionships that can be considered as intrinsically positive or negative, as, for
example, interpersonal liking or disliking. Most research employing signed
digraphs has been designed to test a hypothesis advanced by Heider (1946),
Newcomb (1953; 1963), Davis (1967) and others that such structures display a
tendency toward balance or clusterability. A signed digraph is clusterable if its
set of points can be partitioned into subsets, called clusters, such that all points
joined by a positive arc are in the same subset and all points joined by a nega-
tive arc are in different subsets. A signed digraph is balanced if it is cluster-
able into two clusters (Cartwright and Harary, 1956; 1968). The hypothesized
tendency toward clusterability (or balance) thus implies a tendency for the
elements of a signed structure to form clusters which contain only positive
relationships.

Let us now consider the boundary properties of the clusters of a clusterable
signed digraph D. It is immediately evident that all positive arcs of D are inter-
nal arcs of some cluster and that all negative arcs are liaisons. Thus, the
boundary of each cluster of D contains only negative liaisons. We shall say that
such a boundary is negative. The next theorem and corollary summarize these
observations.

Theorem 2. A signed digraph D is clusterable if and only if its set of points can
be partitioned into clusters such that the boundary of each cluster is either
empty or negative.

Corollary 2a. In a clusterable signed digraph, every point that is incident with
a negative arc lies in the frontier of some cluster, and the frontier of every
cluster contains only such points.

We conclude this section by considering the properties of sociometric struc-
tures that are not only clusterable but also satisfy the requirement that positive
choices are transitive or quasi-transitive. Let D be the spanning subgraph ob-
tained by removing all negative arcs from a signed digraph D, and let us call
its weak components the positive weak components of D. The next theorem
characterizes any clusterable signed digraph whose positive arcs display the
property of quasi-transitivity. Statement (2) of this theorem is a consequence
of a criterion for clusterability given by Davis (1967) and Cartwright and
Harary (1968).

Theorem 3. Let D be a clusterable signed digraph whose subgraph D* is quasi-
transitive. Then for each positive weak component C of D,
(1) C is a partial order of strong components.
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(2) No negative arc of D joins two points of C.
(3) The boundary of C is either empty or negative.

If a signed sociometric structure realizes both of these tendencies, toward
clusterability and quasi-transitivity (or transitivity), then all negative choices
will be liaisons of some positive weak component and every positive weak
component will be a partial order of its strong components. It should be noted
that the important components are different for quasi-transitivity and clustera-
bility. For the former, the strong components are critical and their liaisons are
asymmetric arcs while for the latter, the weak components are critical and their
liaisons are negative arcs.

Convexity in Digraphs

In the context of plane geometry, a set of points in the Euclidean plane is said
to be convex if for any two points in the set the straight-line segment joining
them lies within the set. Pfaltz (1971) has generalized this concept to directed
graphs by defining a subset S of the points of a digraph D as convex if for any
two points in S all walks in D from one to other have all their points in §S.

It can readily be seen that the concept of convexity is intimately related to
that of boundary, for if a walk joining two points of a system S contains a point
not in S, it must contain both an out-liaison and an in-liaison of S. Thus, if the
boundary of S is empty, outwardly oriented or inwardly oriented, the set of
points in § must be convex since there can be no such walk in D. However,
none of these sufficient conditions for convexity is necessary since S may be
convex even though its boundary contains both out-liaisons and in-liaisons.

Let us assume that S is a convex subgroup within an interpersonal com-
munication structure. Then it follows that if a message can go between two
members of S it must stay entirely within the subgroup. And, if we assume that
S is a convex department within the mobility structure of an organization, then
no permissible career line between two positions of S will contain a position
outside of the department. From these two examples, we see that convexity
reflects a kind of segregation of a system within a structure and that measures
of the degree of convexity will reflect corresponding degrees of segregation. It
should be noted, however, that a convex system may influence its environment
or be influenced by it.

Given a specified set S of the points of a digraph D, we say that a walk is
internal to S, or an internal walk, if all of its points are in S. An excursion from
S is a walk whose first arc is an out-liaison of S, whose last arc is an in-liaison
of S, and which contains no other liaisons. Thus, every excursion from § starts
at a point in the out-frontier of S, passes through a point in its out-neighborhood
and one in its in-neighborhood and ends at a point in its in-frontier. The next
theorem characterizes the convex sets in any digraph D.
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Theorem 4. The following statements are equivalent for any set S of points of
a digraph D:

(1) S is convex.

(2) D contains no walk from a point in the out-neighborhood of S to a point in
its in-neighborhood. Thus, no point in N, can reach a point in N,.

(3) D contains no excursions from S.

Corollary 4a. The points in each strong component of D form a convex set.

As an illustration of this theorem, let us consider the system S = {s,, 52, 53}
contained in the digraph D of Figure 6. Clearly, S is a strong component of D
and, in keeping with Corollary 4a, it is convex since all walks between any two
of its points lie entirely within §. Statement (2) is satisfied since N, = {e,},
N; = {e,} and there is no walk from e, to e,. And Statement (3) is satisfied since
D contains no excursion from S.

The digraph shown in Figure 7 is the same as the one in Figure 6 except that
the arc e,e, is substituted for e,e,. Now, S is not convex since e, can reach e,
and there is an excursion from s, to s; via ¢, and e,.

S5 e, e,
—a _—a
-« Y
D s, A Y Y
> >
Ll r
Sy € €

Figure 6. A convex system S.

55 e, ey
- <
-« <
D 8 A A Y
- >
> >
8, e, e,

Figure 7. A system S that is not convex.
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If a subset S of points of a digraph D is not convex, then it must be contained
in a convex set since the set V of all points of D is obviously convex. The
convex hull of S, denoted H(S), is the smallest convex set of points of D con-
taining S. Clearly, S is convex if and only if H(S) = S. The next theorem, whose
proof is omitted, establishes that every set of points of a digraph has exactly
one convex hull.

Theorem 5. For any set S of points of D, the convex hull of S is unique.

Referring again to the digraph of Figure 7, we see that the convex huli of §
is H(S) = {s,, 51, 53, €1, ¢,}. Points ¢, and e,, and no others, must be added to §
since these points are contained in the unique excursion from S.

If a point u is not the only point in its strong component, the set S = {u} is
not convex, for then there is at least one other point v mutually reachable from
u which thus lies on a walk from u to itself. This observation, together with
Corollary 4a, shows that the strong component containing u is precisely the
convex hull of {#}. The next theorem follows directly.

Theorem 6. The convex hull of a set S of points of D is the union of the strong
components containing each of its points.

This theorem now provides a means of identifying all of the convex sets in
adigraph D. It will be recalled that the strong components C; of D are the points
of the condensation D*.

Corollary 6a. If {C,, C,, . . ., C,} is a convex set in D*, then the points in C,
UGU ... UC, form a convex set in D, and conversely.

The extension of S, denoted W(S), is the subgraph of D induced by all the
excursions from S. Clearly, S is convex if and only if W(S) is empty, and the
union of the set of points in W(S) with those in § constitutes the convex hull
H(S). Figure 8 shows a system S = {s), s, 5;} and its extension W(S). It can
readily be seen that S is not convex and that its convex hull is H(S) = {s,, 52,
53, €1, €3, €5}

The extension of a system S that is not convex may be thought of as the
subgraph of D “responsible” for this lack of convexity since W(S) contains all
excursions from S. This observation suggests four different indices of the de-
gree to which a system S deviates from convexity. The first two are provided
by the size of W(S), as measured by the number of its points or arcs. For the
system shown in Figure 8, these indices are both 5. A third index, more struc-
tural in nature, is given by the number of excursions contained in W(S). There
is, however, a problem in counting these excursions since any digraph contain-
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Figure 8. A system S and its extension W(S).

ing a cycle has an infinite number of walks (of finite but unlimited length).
Thus, if W(S) contains a cycle, a meaningful index can be obtained only by
counting walks of restricted length. For the example given in Figure 8, it would
seem natural to consider excursions of length 6 or less, and we see that there
are two such excursions, namely, one of length 3 and one of length 6. The
fourth-index is provided by the hull-ratio of S, which is defined as the number
of points in S divided by the number in H(S). Since the number of points in
H(S) is clearly the number in S plus the number in W(S) not contained in S, the
hull-ratio of S is 1 if and only if § itself is convex and decreases as more and
more points are required to form a convex set from S. For the system shown in
Figure 8, we see that the hull-ratio of S is %.

The excursions of any system S may, of course, penetrate the environment
of § in varying degrees. A measure of the depth of environmental penetration
of these excursions can be constructed in terms of the out-strata ,E, of the
environment of S, described above. More specifically, we define the out-reach
of S as the maximum » such that W(S) contains a point in ,E,, the n’th out-
strata of S. Referring again to Figure 8, we see that the out-strata of the envi-
ronment of S are \E, = {e,}, .E, = {es}, :E, = {e,} and ,E, = {e;, e,}. And
since W(S) contains e, but not e; or e,, the out-reach of S is 3.
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Matrix Operations

In empirical research on boundaries and convexity, the digraphs considered
will usually be sufficiently complex to make it difficult to ascertain their prop-
erties by visual inspection. We now indicate briefly how the adjacency matrix
of a digraph can be used to facilitate the investigation of these properties. Given
a digraph D, its adjacency matrix A(D) is a square matrix with one row and
one column for each point of D, in which g; = 1 if arc vy;isin D and a; = 0
if vy, is not in D. Figure g shows a labeled digraph D and its adjacency matrix -
A(D), where S = {v,, v,, v3, v,} is the set of points of system S and E = {vs, v,
v;} is the set of points in its environment. We assume for present purposes that
the points of D are labeled so that those in S are v, v,, . . ., v,, and those in E
are Vo s Vi zs - - - 5 Ve

It will be noted that the matrix A(D) in Figure g is partitioned into four
submatrices which can be denoted as follows:

[ A(S) | A(L,) }
A(D) —'——f
A(L) 1 A(E)

_ S E _
0100[000
glo010]|000
0101|100
AD) = 1000]010
0010010
Elooo0o0|101
[1000/01 0]

Figure g. The adjacency matrix of a digraph containing a system S and its
environment E.



324 Methodological Developments

Let us consider the entries in each of these submatrices separately. The unit
entries in A(S) clearly correspond to the internal arcs of S, since A(S) is the
adjacency matrix of S. The unit entries in A(L,) correspond to the out-liaisons
of S, since their first points are in S and their second points are in E. The unit
entries in A(L;) correspond to the in-liaisons of S, since their first points are in
E and their second points are in S. And the unit entries in A(E) correspond to
arcs lying entirely in E.

It can readily be ascertained that in this example L, = {vsvs, vove}, L; =
{vsvs, vivi 1, Fo = {vs, v}, Fi = {vi, v}, N, = {vs, vs} and N, = {v,, v,}. From
this information, the boundary B(S, D) can be immediately identified.

In general, the boundary of a system S within a digraph D is empty if and
only if the submatrices A(L,) and A(L) contain only zeros. It is outwardly ori-
ented if and only if A(L,) has at least one unit entry and A(L,) has none. And
it is inwardly oriented if and only if A(L,) contains a unit entry while A(L,)
does not.

We now show how the adjacency matrix A(D) can be employed to provide
information about the convexity properties of any system § within D. For this
purpose, we make use of the fact that each entry a¥ in the k’th power of A(D)
gives the number of walks of length & from v; to v; in D. Starting with a given
adjacency matrix A(D) we change each unit entry in the submatrix A(S) to zero.
This has the effect of forming the adjacency matrix C = A(D?) of the subgraph
D obtained by deleting from D all internal arcs of S. Clearly, every walk from
a point v; to v; of §'in D° is an excursion from S in D, since none of these walks
contains an internal arc of S. The next theorem follows immediately.

Theorem 7. Each entry ¢ in the submatrix C(S) of the k’th power of C gives
the number of excursions of length k from a point v, to a point v; in S.

This result, together with Theorem 4, leads directly to the following
corollary.

Corollary 7a. The set S of points is convex in a digraph D if and only if in all
powers C* of the matrix C, the sub-matrix CXS) has only zero entries.

Summary and Conclusions

The conceptualization presented in this paper is intended to apply to any em-
pirical structure consisting of a set of elements and a set of relationships, where
some of the elements can be conceived as belonging to a system and the re-
mainder to its environment. For any such structure, there is an associated di-
graph D whose points and arcs represent the elements and relationships of the
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structure, and whose set of points is partitioned into two subsets, S (those cor-
responding to the elements of the system) and E (those in its environment).
Given this partitioning, four types of arcs (relationships) are distinguished ac-
cording to whether they join (a) two points of S (internal arcs), (b) two points
of E (external arcs), (c) a point of S to one of E (out-liaisons of S) or (d) a point
of E to one of S (in-liaisons of S). The boundary of S is then defined as the
subgraph of D induced by the liaisons of S. The boundary thus consists of those
elements of S that are in its frontier, those elements of E in its neighborhood
and those relationships of D that join elements of S with ones in E. Finally,
* these concepts, together with others of graph theory, are used to define a num-
ber of higher-order concepts and related indexes, such as the orientation of a
boundary, the degree of stratification of a system and its environment and the
convexity of a system.

The strict correspondence between the elements and relationships of a given
structure and the points and arcs of its associated digraph D assures that the
formal properties of D are also properties of this empirical structure. It should
be noted that these properties, in themselves, refer only to the structural as-
pects of system-environment relationships and not to the processes occurring
in such structures. We believe, however, that the approach adopted here is
entirely compatible with more dynamically oriented work of systems theorists
and could be extended to incorporate their findings. Thus, for example, Emery
and Trist (1965/ Vol. III), writing in the context of organizational theory, argue
that a basic distinction should be made among four fundamentally different
types of processes: (a) those occurring between elements within an organiza-
tion (system); (b) those between elements in its environment; (c) those directed
from an element of the organization to one in its environment and (d) those
directed from an element of the environment to one of the system. The isomor-
phism between this classification of processes and our classification of arcs
suggests that distinctive processes are associated with each type of arc of an
empirical structure. And a specification of the exact nature of these processes
should permit the formulation of a number of detailed hypotheses as to how
the structural properties of a system and its environment are related to the pro-
cesses occurring in such a structure.

As a first step toward clarifying the relations between these structural prop-
erties and their associated processes, we have proposed that such processes be
conceived as involving the transmission of “messages” through the arcs (links)
of a structure. And we have suggested some ways in which messages may
be differentially affected when transmitted through the different types of arcs.
Thus, for example, we have proposed that the content or meaning of a message
may be altered to a larger degree or in a systematically different way when it
traverses a liaison as compared to a link that is internal or external to a system.
And two somewhat different effects are suggested by Miller (1971) who pro-
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poses that (a) more work is required to transmit a message over the boundary
of a system than to transmit it the same distance immediately inside or outside
the boundary and (b) the amount of information transmitted between elements
within a system is significantly larger than the amount transmitted across the
boundary. A more fully developed analysis of the ways in which messages are
modified as they are transmitted through the arcs of a structure awaits further
theoretical and empirical research.

In conclusion, we note the possibility of extending our formalization by
considering processes that occur “within” the elements of a structure as op-
posed to its links. A beginning in this direction might make use of the work,
cited above, on the distinctive behavior of “boundary persons” (those located
in the frontier of §) and the suggestive ideas of Lewin concerning the functions
performed by “gatekeepers.” Once the exact nature of the processes occurring
at the elements and links of a structure have been identified, it should then be
possible to employ the results of our conceptualization to derive a variety of
empirically testable hypotheses about the dynamics of system-environment
relationships.
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